Logo
0.4.0
  • Hello bot!
  • Installation
  • Conceptual overview
    • Key Concepts
  • Features
    • Components
      • NER component
      • Slot filling components
      • Classification component
      • Goal-oriented bot
      • Seq2seq goal-oriented bot
      • Automatic spelling correction component
      • Ranking component
      • TF-IDF Ranker component
      • Question Answering component
      • Morphological tagging component
      • Frequently Asked Questions (FAQ) component
    • Skills
      • eCommerce bot
      • ODQA
    • AutoML
      • Hyperparameters optimization
    • Embeddings
      • Pre-trained embeddings for the Russian language
    • Examples of some components
  • Configuration files
    • Variables
    • Training
      • Train config
      • Train Parameters
        • Metrics
      • DatasetReader
      • DataLearningIterator and DataFittingIterator
    • Inference
  • Pre-trained embeddings
    • ELMo
      • License
      • Downloads
    • fastText
      • License
      • Downloads
      • Word vectors training parameters
  • AutoML
    • Cross-validation
      • Parameters
      • Special parameters in config
      • Results
    • Parameters evolution for DeepPavlov models
      • Example

Components

  • Data Processors
    • Preprocessors
    • Tokenizers
    • Embedders
    • Vectorizers
  • BERT-based models
    • BERT for Classification
    • BERT for Named Entity Recognition (Sequence Tagging)
    • BERT for Context Question Answering (SQuAD)
    • BERT for Ranking
  • Context Question Answering
    • Task definition
    • Models
      • BERT
      • R-Net
    • Configuration
    • Prerequisites
    • Model usage from Python
    • Model usage from CLI
      • Training
      • Interact mode
    • Pretrained models:
      • SQuAD
      • SQuAD with contexts without correct answers
      • SDSJ Task B
  • Classification
    • Quick start
      • Command line
      • Python code
    • BERT models
    • Neural Networks on Keras
    • Sklearn models
    • Pre-trained models
    • How to train on other datasets
    • Comparison
    • How to improve the performance
    • References
  • Morphological Tagger
    • Usage examples.
      • Python:
      • Command line:
      • Task description
        • Training data
        • Test data
      • Algorithm description
      • Model configuration.
        • Training configuration
  • Named Entity Recognition
    • Train and use the model
    • Multilingual BERT Zero-Shot Transfer
    • NER task
    • Training data
    • Few-shot Language-Model based
    • Literature
  • Neural Ranking
    • Training and inference models on predifined datasets
      • BERT Ranking
      • Building your own response base for bert ranking
      • Ranking
      • Paraphrase identification
      • Paraphraser.ru dataset
      • Quora question pairs dataset
    • Training and inference on your own data
      • Ranking
      • Paraphrase identification
  • Slot filling
    • Configuration of the model
      • Dataset Reader
      • Dataset Iterator
      • Chainer
    • Usage of the model
    • Slotfilling without NER
  • Spelling Correction
    • Quick start
    • levenshtein_corrector
      • Component config parameters:
    • brillmoore
      • Component config parameters:
      • Training configuration
    • Language model
    • Comparison
  • TF-IDF Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Training
      • Interacting
    • Available Data and Pretrained Models
      • enwiki.db
      • enwiki_tfidf_matrix.npz
      • ruwiki.db
      • ruwiki_tfidf_matrix.npz
    • Comparison
    • References
  • Popularity Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Interacting
    • Available Data and Pretrained Models
    • References
  • Knowledge Base Question answering
    • Description
    • Use the model

Skills

  • Goal-Oriented Dialogue Bot
    • Intro
    • Usage
      • Requirements
      • Configs:
      • Usage example
      • Config parameters
    • Datasets
      • DSTC2
      • Your data
        • Dialogs
        • Templates
        • Database (optional)
    • Comparison
    • References
  • Open-Domain Question Answering
    • Task definition
    • Quick Start
    • Languages
    • Models
    • Running ODQA
      • Training
      • Interacting
    • Configuration
    • Comparison
    • References
  • Pattern Matching
  • Sequence-To-Sequence Dialogue Bot
    • Intro
    • Configs
    • Usage
    • Config parameters:
      • Comparison
    • References
  • Frequently Asked Questions Answering
    • Quick Start
      • Building
      • Inference
    • Config
      • Config Structure
      • Vectorizers
      • Classifiers for FAQ
    • Running FAQ
      • Training
      • Interacting
    • Available Data and Pretrained Models
  • eCommerce Bot
    • Quick Start
      • Building
      • Inference
    • Usage
      • Config file
      • Usage example
    • Configuration settings
      • eCommerce bot with BLEU-based ranker
      • eCommerce bot with TfIdf-based ranker
    • References
  • AIML
    • Quick Start
      • Usage

Package Reference

  • agents
    • deeppavlov.agents.default_agent
    • deeppavlov.agents.filters
    • deeppavlov.agents.hello_bot_agent
    • deeppavlov.agents.processors
    • deeppavlov.agents.rich_content
  • core
    • deeppavlov.core.agent
    • deeppavlov.core.commands
    • deeppavlov.core.common
    • deeppavlov.core.data
    • deeppavlov.core.models
    • deeppavlov.core.skill
    • deeppavlov.core.trainers
  • dataset_iterators
  • dataset_readers
  • metrics
  • models
    • deeppavlov.models.api_requester
    • deeppavlov.models.bert
    • deeppavlov.models.classifiers
    • deeppavlov.models.doc_retrieval
    • deeppavlov.models.elmo
    • deeppavlov.models.embedders
    • deeppavlov.models.go_bot
    • deeppavlov.models.kbqa
    • deeppavlov.models.morpho_tagger
    • deeppavlov.models.ner
    • deeppavlov.models.preprocessors
    • deeppavlov.models.ranking
    • deeppavlov.models.seq2seq_go_bot
    • deeppavlov.models.sklearn
    • deeppavlov.models.slotfill
    • deeppavlov.models.spelling_correction
    • deeppavlov.models.squad
    • deeppavlov.models.tokenizers
    • deeppavlov.models.vectorizers
  • skills
    • deeppavlov.skills.aiml_skill
    • deeppavlov.skills.default_skill
    • deeppavlov.skills.ecommerce_skill
    • deeppavlov.skills.pattern_matching_skill
  • vocabs

Developer Guides

  • Amazon Alexa integration
    • 1. Skill setup
    • 2. DeepPavlov skill/component REST service mounting
  • Amazon AWS deployment
    • 1. AWS EC2 machine launch
    • 2. DeepPavlov ODQA deployment
    • 3. Accessing your ODQA API
  • Extending the library
  • Microsoft Bot Framework integration
    • 1. Web App Bot setup
    • 2. DeepPavlov skill/component REST service mounting
  • REST API
  • DeepPavlov settings
    • 1. Settings files access and management
    • 2. Dialog logging
    • 3. Environment variables
  • Yandex Alice integration
    • Pipelines
    • Agents
DeepPavlov
  • Docs »
  • models
  • Edit on GitHub

modelsΒΆ

Concrete Model classes.

Models

  • deeppavlov.models.api_requester
  • deeppavlov.models.bert
  • deeppavlov.models.classifiers
  • deeppavlov.models.doc_retrieval
  • deeppavlov.models.elmo
  • deeppavlov.models.embedders
  • deeppavlov.models.go_bot
  • deeppavlov.models.kbqa
  • deeppavlov.models.morpho_tagger
  • deeppavlov.models.ner
  • deeppavlov.models.preprocessors
  • deeppavlov.models.ranking
  • deeppavlov.models.seq2seq_go_bot
  • deeppavlov.models.sklearn
  • deeppavlov.models.slotfill
  • deeppavlov.models.spelling_correction
  • deeppavlov.models.squad
  • deeppavlov.models.tokenizers
  • deeppavlov.models.vectorizers
Next Previous

© Copyright 2018, Neural Networks and Deep Learning lab, MIPT Revision e67b1118.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: 0.4.0
Versions
latest
0.4.0
0.3.1
0.3.0
0.2.0
0.1.6
0.1.5.1
0.1.5
0.1.1
master
agent
0.1.0
0.0.9
0.0.8
0.0.7
0.0.6.5
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.