# Copyright 2017 Neural Networks and Deep Learning lab, MIPT
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from logging import getLogger
from types import FunctionType
from typing import Any, Dict, Union
from deeppavlov.core.commands.utils import expand_path, parse_config
from deeppavlov.core.common.errors import ConfigError
from deeppavlov.core.common.registry import get_model
from deeppavlov.core.models.component import Component
log = getLogger(__name__)
_refs = {}
def resolve(val):
if isinstance(val, str) and val.startswith('#'):
component_id, *attributes = val[1:].split('.')
try:
val = _refs[component_id]
except KeyError:
e = ConfigError('Component with id "{id}" was referenced but not initialized'
.format(id=component_id))
log.exception(e)
raise e
attributes = ['val'] + attributes
val = eval('.'.join(attributes))
return val
def _init_param(param, mode):
if isinstance(param, str):
param = resolve(param)
elif isinstance(param, (list, tuple)):
param = [_init_param(p, mode) for p in param]
elif isinstance(param, dict):
if {'ref', 'class_name', 'config_path'}.intersection(param.keys()):
param = from_params(param, mode=mode)
else:
param = {k: _init_param(v, mode) for k, v in param.items()}
return param
[docs]def from_params(params: Dict, mode: str = 'infer', **kwargs) -> Union[Component, FunctionType]:
"""Builds and returns the Component from corresponding dictionary of parameters."""
# what is passed in json:
config_params = {k: resolve(v) for k, v in params.items()}
# get component by reference (if any)
if 'ref' in config_params:
try:
return _refs[config_params['ref']]
except KeyError:
e = ConfigError('Component with id "{id}" was referenced but not initialized'
.format(id=config_params['ref']))
log.exception(e)
raise e
elif 'config_path' in config_params:
from deeppavlov.core.commands.infer import build_model
refs = _refs.copy()
_refs.clear()
config = parse_config(expand_path(config_params['config_path']), config_params.get('overwrite'))
model = build_model(config)
_refs.clear()
_refs.update(refs)
try:
_refs[config_params['id']] = model
except KeyError:
pass
return model
cls_name = config_params.pop('class_name', None)
if not cls_name:
e = ConfigError('Component config has no `class_name` nor `ref` fields')
log.exception(e)
raise e
obj = get_model(cls_name)
if inspect.isclass(obj):
# find the submodels params recursively
config_params = {k: _init_param(v, mode) for k, v in config_params.items()}
try:
spec = inspect.getfullargspec(obj)
if 'mode' in spec.args + spec.kwonlyargs or spec.varkw is not None:
kwargs['mode'] = mode
component = obj(**dict(config_params, **kwargs))
try:
_refs[config_params['id']] = component
except KeyError:
pass
except Exception:
log.exception("Exception in {}".format(obj))
raise
else:
component = obj
return component