Logo
0.17.6
  • Installation
    • Docker Images
  • QuickStart
    • Command line interface (CLI)
    • Python
    • Using GPU
    • Pretrained models
    • Docker images
    • Out-of-the-box pretrained models
      • Text Question Answering
      • Name Entity Recognition
      • Insult Detection
      • Sentiment Analysis
      • Paraphrase Detection
  • General concepts
    • Key Concepts
  • Configuration file
    • Variables
    • Training
      • Train config
      • Train Parameters
        • Metrics
      • DatasetReader
      • DataLearningIterator and DataFittingIterator
    • Inference
    • Model Configuration
      • Preprocessors
      • Tokenizers
      • Embedders
      • Vectorizers
  • Choosing The Framework
    • Trainer
    • Text Classification on Keras or PyTorch
    • Other NLP-tasks on TensorFlow, Keras, or PyTorch
  • Models/Skills overview
    • Models
      • NER model [docs]
      • Slot filling models [docs]
      • Classification model [docs]
      • Automatic spelling correction model [docs]
      • Ranking model [docs]
      • TF-IDF Ranker model [docs]
      • Question Answering model [docs]
      • Morphological tagging model [docs]
      • Syntactic parsing model [docs]
      • Frequently Asked Questions (FAQ) model [docs]
    • Skills
      • Goal-oriented bot [docs]
      • ODQA [docs]
    • AutoML
      • Hyperparameters optimization [docs]
    • Embeddings
      • Pre-trained embeddings [docs]
    • Examples of some models

Features

  • Pre-trained embeddings
    • BERT
      • License
      • Downloads
    • ELMo
      • License
      • Downloads
    • fastText
      • License
      • Downloads
      • Word vectors training parameters
  • AutoML
    • Cross-validation
      • Parameters
      • Special parameters in config
      • Results

Models

  • BERT-based models
    • BERT as Embedder
    • BERT for Classification
    • BERT for Named Entity Recognition (Sequence Tagging)
    • BERT for Morphological Tagging
    • BERT for Syntactic Parsing
    • BERT for Context Question Answering (SQuAD)
    • BERT for Ranking
    • Using custom BERT in DeepPavlov
  • Multitask BERT
    • Train config
    • Inference config
  • Context Question Answering
    • Task definition
    • Models
      • BERT
      • R-Net
    • Configuration
    • Prerequisites
    • Model usage from Python
    • Model usage from CLI
      • Training
      • Interact mode
    • Pretrained models:
      • SQuAD
      • SQuAD with contexts without correct answers
      • SDSJ Task B
      • DRCD
  • Classification
    • Quick start
      • Command line
      • Python code
    • BERT models
    • Neural Networks on Keras
    • Neural Networks on PyTorch
    • Sklearn models
    • Pre-trained models
    • GLUE Benchmark
    • How to train on other datasets
    • Comparison
    • How to improve the performance
    • References
  • Entity Linking
    • Use the model
  • Morphological Tagger
    • Usage examples.
      • Python:
      • Advanced models (BERT and lemmatized models).
      • Command line:
      • Task description
        • Training data
        • Test data
      • Algorithm description
      • Model configuration.
        • Training configuration
  • Named Entity Recognition
    • Train and use the model
    • Multilingual BERT Zero-Shot Transfer
    • NER task
    • Training data
    • Few-shot Language-Model based
    • NER-based Model for Sentence Boundary Detection Task
    • Literature
  • Neural Ranking
    • Training and inference models on predifined datasets
      • BERT Ranking
      • Building your own response base for bert ranking
      • Ranking
      • Paraphrase identification
      • Paraphraser.ru dataset
    • Training and inference on your own data
      • Ranking
      • Paraphrase identification
  • Slot filling
    • Configuration of the model
      • Dataset Reader
      • Dataset Iterator
      • Chainer
    • Usage of the model
    • Slotfilling without NER
  • Speech recognition and synthesis
    • Speech recognition
    • Speech synthesis
    • Audio encoding end decoding.
    • Quck Start
      • Preparation
      • Speech recognition
      • Speech synthesis
      • Speech to speech
    • Models training
  • Spelling Correction
    • Quick start
    • levenshtein_corrector
      • Component config parameters:
    • brillmoore
      • Component config parameters:
      • Training configuration
    • Language model
    • Comparison
  • Syntactic Parser
    • Model usage
    • Joint model usage
    • Model architecture
    • Model quality
  • TF-IDF Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Training
      • Interacting
    • Available Data and Pretrained Models
      • enwiki.db
      • enwiki_tfidf_matrix.npz
      • ruwiki.db
      • ruwiki_tfidf_matrix.npz
    • Comparison
    • References
  • Popularity Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Interacting
    • Available Data and Pretrained Models
    • References
  • Knowledge Base Question answering
    • Overview
    • Built-In Models
    • How Do I: Using KBQA In CLI & Python
    • How Do I: Train KBQA Model
    • How Do I: Train Query Prediction Model
    • How Do I: Train Entity Detection Model
    • How Do I: Train Relation and Path Ranking Models
    • How Do I: Adding Templates For New SPARQL Queries
    • Advanced: Using Entity Linking and Wiki Parser As Standalone Services For KBQA
  • Intent Catcher
    • Overview
      • Goals
    • Features
    • How Do I: Train My Intent Classifier
      • Dataset construction
      • Train and evaluate model
    • How Do I: Integrate Intent Catcher into DeepPavlov Deepy
    • References
  • Relation Extraction
    • English RE model
    • Russian RE model
    • RE Model Architecture

Skills

  • Goal-Oriented Dialogue Bot
    • Overview
    • RASA DSLs Format Support
      • Overview
        • stories.md
        • nlu.md
        • domain.yml
      • How Do I: Build Go-Bot Skill with RASA DSLs (v1)
        • Tutorials
      • How Do I: Integrate Go-Bot-based Goal-Oriented Skill into DeepPavlov Deepy
      • How Do I: Use Form-Filling in Go-Bot Skill with RASA DSLs (v1)
        • Tutorials
    • DSTC2 Format Support
      • Overview
      • Quick Demo
      • How Do I: Build Go-Bot with DSTC2
        • Requirements
        • Configs
        • Usage example
        • Config parameters
      • Datasets
        • DSTC2
        • Your data
      • Database (Optional)
    • Comparison
    • References
  • Open-Domain Question Answering
    • Task definition
    • Quick Start
    • Languages
    • Models
    • Running ODQA
      • Training
      • Interacting
    • Configuration
    • Comparison
    • References
  • Frequently Asked Questions Answering
    • Quick Start
      • Building
      • Inference
    • Config
      • Config Structure
      • Vectorizers
      • Classifiers for FAQ
    • Running FAQ
      • Training
      • Interacting
    • Available Data and Pretrained Models

Integrations

  • REST API
    • API routes
      • /model
      • /probe
      • /api
      • /docs
      • /metrics
    • Advanced configuration
  • Socket API
    • Advanced configuration
    • Socket client example (Python)
  • DeepPavlov Agent RabbitMQ integration
    • Command line interface
    • Python interface
  • Telegram integration
    • Command line interface
    • Python
  • Yandex Alice integration
    • Command line interface
    • Python
  • Amazon Alexa integration
    • 1. Skill setup
    • 2. DeepPavlov skill/model REST service mounting
  • Microsoft Bot Framework integration
    • 1. Web App Bot setup
    • 2. DeepPavlov skill/model REST service mounting
  • Amazon AWS deployment
    • 1. AWS EC2 machine launch
    • 2. DeepPavlov ODQA deployment
    • 3. Accessing your ODQA API
  • DeepPavlov settings
    • 1. Settings files access and management
    • 2. Dialog logging
    • 3. Environment variables

Developer Guides

  • Contribution guide
  • Register your model

Internships

  • Internships

Package Reference

  • core
    • deeppavlov.core.commands
    • deeppavlov.core.common
    • deeppavlov.core.data
    • deeppavlov.core.models
    • deeppavlov.core.trainers
  • dataset_iterators
  • dataset_readers
  • metrics
  • models
    • deeppavlov.models.api_requester
    • deeppavlov.models.bert
    • deeppavlov.models.classifiers
    • deeppavlov.models.doc_retrieval
    • deeppavlov.models.embedders
    • deeppavlov.models.entity_linking
    • deeppavlov.models.go_bot
    • deeppavlov.models.intent_catcher
    • deeppavlov.models.kbqa
    • deeppavlov.models.morpho_tagger
    • deeppavlov.models.multitask_bert
    • deeppavlov.models.nemo
    • deeppavlov.models.ner
    • deeppavlov.models.preprocessors
    • deeppavlov.models.ranking
    • deeppavlov.models.relation_extraction
    • deeppavlov.models.sklearn
    • deeppavlov.models.slotfill
    • deeppavlov.models.spelling_correction
    • deeppavlov.models.squad
    • deeppavlov.models.syntax_parser
    • deeppavlov.models.tokenizers
    • deeppavlov.models.torch_bert
    • deeppavlov.models.vectorizers
  • vocabs
DeepPavlov
  • »
  • Python Module Index

Python Module Index

d
 
d
- deeppavlov
    deeppavlov.core
    deeppavlov.core.commands.infer
    deeppavlov.core.commands.train
    deeppavlov.core.common.metrics_registry
    deeppavlov.core.common.params
    deeppavlov.core.common.registry
    deeppavlov.dataset_iterators.typos_iterator
    deeppavlov.dataset_readers.dstc2_reader
    deeppavlov.dataset_readers.kvret_reader
    deeppavlov.dataset_readers.md_yaml_dialogs_reader
    deeppavlov.dataset_readers.morphotagging_dataset_reader
    deeppavlov.dataset_readers.typos_reader
    deeppavlov.dataset_readers.ubuntu_v2_mt_reader
    deeppavlov.dataset_readers.ubuntu_v2_reader
    deeppavlov.metrics
    deeppavlov.models
    deeppavlov.models.api_requester
    deeppavlov.models.bert
    deeppavlov.models.classifiers
    deeppavlov.models.doc_retrieval
    deeppavlov.models.go_bot
    deeppavlov.models.kbqa
    deeppavlov.models.ranking.siamese_model
    deeppavlov.models.sklearn
    deeppavlov.models.squad.squad
    deeppavlov.models.torch_bert
    deeppavlov.vocabs
    deeppavlov.vocabs.typos

Problem? Ask a Question or try our Demo

twitter youtube medium

© Copyright 2018, Neural Networks and Deep Learning lab, MIPT Revision 27ad09ef.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: 0.17.6
Versions
master
latest
1.0.0rc1
1.0.0rc0
0.17.6
0.17.5
0.17.4
0.17.3
0.17.2
0.17.1
0.17.0
0.16.0
0.15.0
0.14.1
0.14.0
0.13.0
0.12.1
0.12.0
0.11.0
0.10.0
0.9.1
0.9.0
0.8.0
0.7.1
0.7.0
0.6.0
0.5.1
0.5.0
0.4.0
0.3.1
0.3.0
0.2.0
0.1.6
0.1.5.1
0.1.5
0.1.1
ya-metrica
agent
0.1.0
0.0.9
0.0.8
0.0.7
0.0.6.5
Downloads
On Read the Docs
Project Home
Builds