Logo
0.7.0
  • Installation
    • Docker Images
  • QuickStart
    • Command line interface (CLI)
    • Python
    • Using GPU
    • Pretrained models
    • Docker images
    • Out-of-the-box pretrained models
      • Text Question Answering
      • Name Entity Recognition
      • Insult Detection
      • Sentiment Analysis
      • Paraphrase Detection
  • General concepts
    • Key Concepts
  • Configuration file
    • Variables
    • Training
      • Train config
      • Train Parameters
        • Metrics
      • DatasetReader
      • DataLearningIterator and DataFittingIterator
    • Inference
    • Model Configuration
      • Preprocessors
      • Tokenizers
      • Embedders
      • Vectorizers
  • Models/Skills overview
    • Models
      • NER model [docs]
      • Slot filling models [docs]
      • Classification model [docs]
      • Automatic spelling correction model [docs]
      • Ranking model [docs]
      • TF-IDF Ranker model [docs]
      • Question Answering model [docs]
      • Morphological tagging model [docs]
      • Syntactic parsing model [docs]
      • Frequently Asked Questions (FAQ) model [docs]
    • Skills
      • Goal-oriented bot [docs]
      • Seq2seq goal-oriented bot [docs]
      • ODQA [docs]
    • AutoML
      • Hyperparameters optimization [docs]
    • Embeddings
      • Pre-trained embeddings [docs]
    • Examples of some models

Features

  • Pre-trained embeddings
    • BERT
      • License
      • Downloads
    • ELMo
      • License
      • Downloads
    • fastText
      • License
      • Downloads
      • Word vectors training parameters
  • AutoML
    • Cross-validation
      • Parameters
      • Special parameters in config
      • Results
    • Parameters evolution for DeepPavlov models
      • Example

Models

  • BERT-based models
    • BERT for Classification
    • BERT for Named Entity Recognition (Sequence Tagging)
    • BERT for Morphological Tagging
    • BERT for Syntactic Parsing
    • BERT for Context Question Answering (SQuAD)
    • BERT for Ranking
    • Using custom BERT in DeepPavlov
  • Context Question Answering
    • Task definition
    • Models
      • BERT
      • R-Net
    • Configuration
    • Prerequisites
    • Model usage from Python
    • Model usage from CLI
      • Training
      • Interact mode
    • Pretrained models:
      • SQuAD
      • SQuAD with contexts without correct answers
      • SDSJ Task B
  • Classification
    • Quick start
      • Command line
      • Python code
    • BERT models
    • Neural Networks on Keras
    • Sklearn models
    • Pre-trained models
    • How to train on other datasets
    • Comparison
    • How to improve the performance
    • References
  • Morphological Tagger
    • Usage examples.
      • Python:
      • Advanced models (BERT and lemmatized models).
      • Command line:
      • Task description
        • Training data
        • Test data
      • Algorithm description
      • Model configuration.
        • Training configuration
  • Named Entity Recognition
    • Train and use the model
    • Multilingual BERT Zero-Shot Transfer
    • NER task
    • Training data
    • Few-shot Language-Model based
    • Literature
  • Neural Ranking
    • Training and inference models on predifined datasets
      • BERT Ranking
      • Building your own response base for bert ranking
      • Ranking
      • Paraphrase identification
      • Paraphraser.ru dataset
      • Quora question pairs dataset
    • Training and inference on your own data
      • Ranking
      • Paraphrase identification
  • Slot filling
    • Configuration of the model
      • Dataset Reader
      • Dataset Iterator
      • Chainer
    • Usage of the model
    • Slotfilling without NER
  • Spelling Correction
    • Quick start
    • levenshtein_corrector
      • Component config parameters:
    • brillmoore
      • Component config parameters:
      • Training configuration
    • Language model
    • Comparison
  • Syntactic parsing
  • Model usage
  • Joint model usage
  • Model architecture
  • Model quality
  • TF-IDF Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Training
      • Interacting
    • Available Data and Pretrained Models
      • enwiki.db
      • enwiki_tfidf_matrix.npz
      • ruwiki.db
      • ruwiki_tfidf_matrix.npz
    • Comparison
    • References
  • Popularity Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Interacting
    • Available Data and Pretrained Models
    • References
  • Knowledge Base Question answering
    • Description
    • Use the model

Skills

  • Goal-Oriented Dialogue Bot
    • Intro
    • Usage
      • Requirements
      • Configs:
      • Usage example
      • Config parameters
    • Datasets
      • DSTC2
      • Your data
        • Dialogs
        • Templates
        • Database (optional)
    • Comparison
    • References
  • Open-Domain Question Answering
    • Task definition
    • Quick Start
    • Languages
    • Models
    • Running ODQA
      • Training
      • Interacting
    • Configuration
    • Comparison
    • References
  • Sequence-To-Sequence Dialogue Bot
    • Intro
    • Configs
    • Usage
    • Config parameters:
      • Comparison
    • References
  • Frequently Asked Questions Answering
    • Quick Start
      • Building
      • Inference
    • Config
      • Config Structure
      • Vectorizers
      • Classifiers for FAQ
    • Running FAQ
      • Training
      • Interacting
    • Available Data and Pretrained Models
  • AIML
    • Quick Start
      • Usage
  • Rasa
    • Quick Start
    • Dummy Rasa project
      • Usage without DeepPavlov configuration files
  • DSL
    • Quick Start
      • Usage

Integrations

  • REST API
    • API routes
      • /model
      • /probe
      • /api
      • /docs
    • Advanced configuration
  • Socket API
    • Advanced configuration
    • Socket client example (Python)
  • Telegram integration
    • Command line interface
    • Python
  • Yandex Alice integration
    • Command line interface
    • Python
  • Amazon Alexa integration
    • 1. Skill setup
    • 2. DeepPavlov skill/model REST service mounting
  • Microsoft Bot Framework integration
    • 1. Web App Bot setup
    • 2. DeepPavlov skill/model REST service mounting
  • Amazon AWS deployment
    • 1. AWS EC2 machine launch
    • 2. DeepPavlov ODQA deployment
    • 3. Accessing your ODQA API
  • DeepPavlov settings
    • 1. Settings files access and management
    • 2. Dialog logging
    • 3. Environment variables

Developer Guides

  • Contribution guide
  • Register your model

Package Reference

  • core
    • deeppavlov.core.commands
    • deeppavlov.core.common
    • deeppavlov.core.data
    • deeppavlov.core.models
    • deeppavlov.core.trainers
  • dataset_iterators
  • dataset_readers
  • metrics
  • models
    • deeppavlov.models.api_requester
    • deeppavlov.models.bert
    • deeppavlov.models.classifiers
    • deeppavlov.models.doc_retrieval
    • deeppavlov.models.elmo
    • deeppavlov.models.embedders
    • deeppavlov.models.go_bot
    • deeppavlov.models.kbqa
    • deeppavlov.models.morpho_tagger
    • deeppavlov.models.ner
    • deeppavlov.models.preprocessors
    • deeppavlov.models.ranking
    • deeppavlov.models.seq2seq_go_bot
    • deeppavlov.models.sklearn
    • deeppavlov.models.slotfill
    • deeppavlov.models.spelling_correction
    • deeppavlov.models.squad
    • deeppavlov.models.syntax_parser
    • deeppavlov.models.tokenizers
    • deeppavlov.models.vectorizers
  • skills
    • deeppavlov.skills.aiml_skill
    • deeppavlov.skills.dsl_skill
    • deeppavlov.skills.rasa_skill
  • vocabs
DeepPavlov
  • Docs »
  • models
  • Edit on GitHub

modelsΒΆ

Concrete Model classes.

Models

  • deeppavlov.models.api_requester
  • deeppavlov.models.bert
  • deeppavlov.models.classifiers
  • deeppavlov.models.doc_retrieval
  • deeppavlov.models.elmo
  • deeppavlov.models.embedders
  • deeppavlov.models.go_bot
  • deeppavlov.models.kbqa
  • deeppavlov.models.morpho_tagger
  • deeppavlov.models.ner
  • deeppavlov.models.preprocessors
  • deeppavlov.models.ranking
  • deeppavlov.models.seq2seq_go_bot
  • deeppavlov.models.sklearn
  • deeppavlov.models.slotfill
  • deeppavlov.models.spelling_correction
  • deeppavlov.models.squad
  • deeppavlov.models.syntax_parser
  • deeppavlov.models.tokenizers
  • deeppavlov.models.vectorizers
Next Previous

Problem? Ask a Question or try our Demo

twitter facebook youtube medium

© Copyright 2018, Neural Networks and Deep Learning lab, MIPT Revision 2303ab6a.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: 0.7.0
Versions
master
latest
0.7.0
0.6.0
0.5.1
0.5.0
0.4.0
0.3.1
0.3.0
0.2.0
0.1.6
0.1.5.1
0.1.5
0.1.1
agent
0.1.0
0.0.9
0.0.8
0.0.7
0.0.6.5
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.