Logo
latest
  • Installation
    • Install with pip
    • Install from source
    • Editable install
    • Docker Images
  • QuickStart
    • Command line interface (CLI)
    • Python
    • Using GPU
    • Pretrained models
    • Docker images
    • Out-of-the-box pretrained models
      • Text Question Answering
      • Open-Domain Question Answering
      • Knowledge Base Question Answering
      • Classification (insult and paraphrase detection, sentiment analysis, topic classification)
      • Name Entity Recognition
      • Entity Extraction
      • Spelling Correction
  • General concepts
    • Key Concepts
  • Configuration file
    • Nested configuration files
    • Variables
    • Training
      • Train config
      • Train Parameters
        • Metrics
      • DatasetReader
      • DataLearningIterator and DataFittingIterator
    • Inference
    • Model Configuration
      • Preprocessors
      • Tokenizers
      • Embedders
      • Vectorizers
  • Python pipelines
  • Models overview
    • Models
      • NER model [docs]
      • Classification model [docs]
      • Automatic spelling correction model [docs]
      • Ranking model [docs]
      • TF-IDF Ranker model [docs]
      • Question Answering model [docs]
      • ODQA [docs]
    • AutoML
      • Hyperparameters optimization [docs]
    • Embeddings
      • Pre-trained embeddings [docs]
    • Examples of some models

Features

  • Pre-trained embeddings
    • BERT
      • License
      • Downloads
    • ELMo
      • Downloads
    • fastText
      • License
      • Downloads
      • Word vectors training parameters
  • AutoML
    • Cross-validation
      • Parameters
      • Special parameters in config
      • Results

Models

  • Multitask BERT
    • Train config
  • Context Question Answering
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
      • 4.2 Predict using CLI
    • 5. Train the model on your data
      • 5.1 Train your model from Python
        • Provide your data path
        • SQuAD dataset info
        • Train the model using new config
      • 5.2 Train your model from CLI
    • 6. Evaluate
      • 6.1 Evaluate from Python
      • 6.2 Evaluate from CLI
  • Classification
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
      • 3.2 Predict using CLI
    • 4. Evaluation
      • 4.1 Evaluate from Python
      • 4.2 Evaluate from CLI
    • 5. Customize the model
      • 5.1 Train your model from Python
        • Provide your data path
        • Train dataset format
        • Train the model using new config
      • 5.2 Train your model from CLI
    • 7. Simple few-shot classifiers
      • 7.1 Few-shot setting
      • 7.2 Multiple languages support
      • 7.3 Dataset and Scores
  • Few-shot Classification
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Dataset format
      • 4.2 Predict using Python
      • 4.2 Predict using CLI
    • 5. Customize the model
  • Named Entity Recognition
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
      • 4.2 Predict using CLI
    • 5. Evaluate
      • 5.1 Evaluate from Python
      • 5.2 Evaluate from CLI
    • 6. Customize the model
      • 6.1 Train your model from Python
        • Provide your data path
        • Train dataset format
        • Train the model using new config
      • 6.2 Train your model from CLI
    • 7. NER-tags list
  • Entity Extraction
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • Entity Detection
        • Entity Linking
        • Entity Extraction
      • 4.2 Predict using CLI
    • 5. Customize the model
      • 5.1 Description of config parameters
      • 5.2 Training entity detection model
      • 5.3 Using custom knowledge base
  • BERT-based models
    • BERT as Embedder
    • BERT for Classification
    • BERT for Named Entity Recognition (Sequence Tagging)
    • BERT for Context Question Answering (SQuAD)
    • Using custom BERT in DeepPavlov
  • Morphological Tagging
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
      • 4.2 Predict using CLI
    • 5. Customize the model
  • Neural Ranking
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • English
        • Russian
      • 4.2 Predict using CLI
        • English
        • Russian
    • 5. Customize the model
      • English
      • Russian
  • Spelling Correction
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • 4.1.1 Levenshtein corrector
        • 4.1.2 Brillmoore
      • 4.2 Predict using CLI
    • 5. Customize the model
      • 5.1 Training configuration
      • 5.2 Language model
    • 6. Comparison
  • Syntactic Parsing
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • Syntax Parser
        • Joint Syntax Parser and Morphological tagger
      • 4.2 Predict using CLI
    • 5. Customize the model
  • TF-IDF Ranking
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • English
        • Russian
      • 4.2 Predict using CLI
    • 5. Customize the model
      • 5.1 Fit on Wikipedia
      • 5.2 Download, parse new Wikipedia dump, build database and index
  • Popularity Ranking
    • Quick Start
    • Configuration
    • Running the Ranker
      • Interacting
    • Available Data and Pretrained Models
    • References
  • Knowledge Base Question answering
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
      • 4.2 Predict using CLI
      • 4.3 Using entity linking and Wiki parser as standalone tools for KBQA
    • 5. Customize the model
      • 5.1 Description of config parameters
      • 5.2 Train KBQA components
        • Train Query Prediction Model
        • Train Entity Detection Model
        • Train Path Ranking Model
        • Adding Templates For New SPARQL Queries
  • Relation Extraction
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
      • Some details on DocRED corpus English RE model was trained on
      • Some details on RuRED corpus Russian RE model was trained on
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • English
        • Russian
    • 5. Customize the model
      • 5.1 Description of config parameters
      • 5.2 Train Relation Extraction on custom data
        • Train with docred_reader
        • Train with rured_reader
  • Train the model using Python:
    • 6. Relations list
      • 6.1 Relations used in English model
      • 6.2 Relations used in Russian model
  • SuperGLUE Submission
    • Task definition
    • Train your model
    • Create your submission files
    • Scores
  • Open-Domain Question Answering
    • Table of contents
    • 1. Introduction to the task
    • 2. Get started with the model
    • 3. Models list
    • 4. Use the model for prediction
      • 4.1 Predict using Python
        • English
        • Russian
      • 4.2 Predict using CLI
    • 5. Customize the model
      • 5.1 Description of config parameters
      • 5.2 Building the index and training the reader model

Integrations

  • REST API
    • API routes
      • /model
      • /probe
      • /api
      • /docs
      • /metrics
    • Advanced configuration
  • REST API Usage Example
  • Socket API
    • Advanced configuration
    • Socket client example (Python)
  • Amazon AWS deployment
    • 1. AWS EC2 machine launch
    • 2. DeepPavlov ODQA deployment
    • 3. Accessing your ODQA API
  • DeepPavlov settings
    • 1. Settings files access and management
    • 2. Dialog logging
    • 3. Environment variables

Developer Guides

  • Contribution guide
  • Register your model

Internships

  • Internships

Package Reference

  • core
    • deeppavlov.core.commands
    • deeppavlov.core.common
    • deeppavlov.core.data
    • deeppavlov.core.models
    • deeppavlov.core.trainers
  • dataset_iterators
  • dataset_readers
  • metrics
  • models
    • deeppavlov.models.api_requester
    • deeppavlov.models.classifiers
    • deeppavlov.models.doc_retrieval
    • deeppavlov.models.embedders
    • deeppavlov.models.entity_extraction
    • deeppavlov.models.kbqa
    • deeppavlov.models.preprocessors
    • deeppavlov.models.relation_extraction
    • deeppavlov.models.sklearn
    • deeppavlov.models.spelling_correction
    • deeppavlov.models.tokenizers
    • deeppavlov.models.torch_bert
    • deeppavlov.models.vectorizers
  • vocabs
DeepPavlov
  • »
  • core
  • Edit on GitHub

coreΒΆ

DeepPavlov Core

Core

  • deeppavlov.core.commands
  • deeppavlov.core.common
  • deeppavlov.core.data
  • deeppavlov.core.models
  • deeppavlov.core.trainers
Next Previous

Problem? Ask a Question or try our Demo

medium twitter youtube medium

© Copyright 2018, Neural Networks and Deep Learning lab, MIPT Revision 926f7a7c.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
master
latest
1.4.0
1.2.0
1.1.1
1.0.2
1.0.1
1.0.0
1.0.0rc1
1.0.0rc0
0.17.6
0.17.5
0.17.4
0.17.3
0.17.2
0.17.1
0.17.0
0.16.0
0.15.0
0.14.1
0.14.0
0.13.0
0.12.1
0.12.0
0.11.0
0.10.0
0.9.1
0.9.0
0.8.0
0.7.1
0.7.0
0.6.0
0.5.1
0.5.0
0.4.0
0.3.1
0.3.0
0.2.0
0.1.6
0.1.5.1
0.1.5
0.1.1
fix-docs
0.1.0
0.0.9
0.0.8
0.0.7
0.0.6.5
Downloads
On Read the Docs
Project Home
Builds