# Copyright 2017 Neural Networks and Deep Learning lab, MIPT
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union, Iterable
import numpy as np
from deeppavlov.core.common.errors import ConfigError
from deeppavlov.core.common.registry import register
from deeppavlov.core.data.utils import zero_pad
from deeppavlov.core.models.component import Component
[docs]@register('one_hotter')
class OneHotter(Component):
"""
One-hot featurizer with zero-padding.
If ``single_vector``, return the only vector per sample which can have several elements equal to ``1``.
Parameters:
depth: the depth for one-hotting
pad_zeros: whether to pad elements of batch with zeros
single_vector: whether to return one vector for the sample (sum of each one-hotted vectors)
"""
def __init__(self, depth: int, pad_zeros: bool = False,
single_vector=False, *args, **kwargs):
self._depth = depth
self._pad_zeros = pad_zeros
self.single_vector = single_vector
if self._pad_zeros and self.single_vector:
raise ConfigError("Cannot perform ``single_vector`` with zero padding for OneHotter")
def __call__(self, batch: List[List[int]], **kwargs) -> Union[List[List[np.ndarray]], List[np.ndarray]]:
"""
Convert given batch of list of labels to one-hot representation of the batch.
Args:
batch: list of samples, where each sample is a list of integer labels.
**kwargs: additional arguments
Returns:
if ``single_vector``, list of one-hot representations of each sample,
otherwise, list of lists of one-hot representations of each label in a sample
"""
one_hotted_batch = []
for utt in batch:
if isinstance(utt, Iterable):
one_hotted_utt = self._to_one_hot(utt, self._depth)
elif isinstance(utt, int):
if self._pad_zeros or self.single_vector:
one_hotted_utt = self._to_one_hot([utt], self._depth)
else:
one_hotted_utt = self._to_one_hot([utt], self._depth).reshape(-1)
if self.single_vector:
one_hotted_utt = np.sum(one_hotted_utt, axis=0)
one_hotted_batch.append(one_hotted_utt)
if self._pad_zeros:
one_hotted_batch = zero_pad(one_hotted_batch)
return one_hotted_batch
@staticmethod
def _to_one_hot(x, n):
b = np.zeros([len(x), n], dtype=np.float32)
for q, tok in enumerate(x):
b[q, int(tok)] = 1
return b